EXTENSIONS OF THE RESULTS ON POWERS OFp-HYPONORMAL AND log-HYPONORMAL OPERATORS
نویسندگان
چکیده
Firstly, we will show the following extension of the results on powers of p-hyponormal and log-hyponormal operators: let n andm be positive integers, if T is p-hyponormal for p ∈ (0,2], then: (i) in case m ≥ p, (Tn+mTn+m)(n+p)/(n+m) ≥ (TnTn)(n+p)/n and (TnTn ∗ )(n+p)/n ≥ (Tn+mTn+m)(n+p)/(n+m) hold, (ii) in case m < p, Tn+mTn+m ≥ (Tn ∗ Tn)(n+m)/n and (TnTn ∗ )(n+m)/n ≥ Tn+mTn+m hold. Secondly, we will show an estimation on powers of p-hyponormal operators for p > 0 which implies the best possibility of our results. Lastly, we will show a parallel estimation on powers of log-hyponormal operators as follows: let α > 1, then the following hold for each positive integer n and m: (i) there exists a log-hyponormal operator T such that (Tn+m ∗ Tn+m)nα/(n+m) ≥ (TnTn)α, (ii) there exists a log-hyponormal operator T such that (TnTn ∗ )α ≥ (Tn+mTn+m)nα/(n+m).
منابع مشابه
On Commutators of Isometries and Hyponormal Operators
A sufficient condition is obtained for two isometries to be unitarily equivalent. Also, a new class of M-hyponormal operator is constructed
متن کاملFractional powers of hyponormal operators of Putnam type
We are concerned with fractional powers of the so-called hyponormal operators of Putnam type. Under some suitable assumptions it is shown that if A, B are closed hyponormal linear operators of Putnam type acting on a complex Hilbert space H, then D((A+B)α) = D(Aα)∩D(Bα) = D((A+B)∗α) for each α ∈ (0,1). As an application, a large class of the Schrödinger’s operator with a complex potential Q ∈ L...
متن کاملOn the Hyponormal Property of Operators
Let $T$ be a bounded linear operator on a Hilbert space $mathscr{H}$. We say that $T$ has the hyponormal property if there exists a function $f$, continuous on an appropriate set so that $f(|T|)geq f(|T^ast|)$. We investigate the properties of such operators considering certain classes of functions on which our definition is constructed. For such a function $f$ we introduce the $f$-Aluthge tran...
متن کاملGeneralized Derivation
In this paper, we give an extension of the orthogonality results to dominant operators and p-hyponormal or log-hyponormal operators, also we will generalize some commutativity results. AMS 2000 Mathematics Subject Classification. 47B47, 47A30, 47B20.
متن کاملJointly Hyponormal Pairs of Commuting Subnormal Operators Need Not Be Jointly Subnormal
We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of R. Curto, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality.
متن کامل